Загрузка

Неравенства

Наибольшее целое число, которое является решением неравенства $$\frac{x+3}{2}-\frac{5x-2}{3}>\frac{4-x}{5}$$, равно:
$$15(x+3)-10(5x-2)>6(4-x)$$, 
 $$15x+45-50x+20-24+6x>0$$, 
$$-29x>-41$$, откуда $$x<1\frac{13}{29}$$. 
Следовательно, $$x=1$$.
Выберите несколько вариантов ответов
Сумма целых чисел, которые не являются решениями неравенства $$|5-x|\geq5$$, равна:
1. $$\left [\begin{matrix} 5-x\geq5,\hfill\\ 5-x\leq-5; \end{matrix}\right.$$ $$\left [\begin{matrix} x\leq0,\hfill\\ x\geq10. \end{matrix}\right.$$ 
2. $$1+2+3+4+5+6+7+8+9=45.$$
Выберите несколько вариантов ответов
Количество натуральных решений неравенства $$\sqrt\frac{7-x}{5}\geq-5$$ равно:
1. $$\frac{7-x}{5}\geq0$$,  $$7-x\geq0$$,  $$x\leq7$$. 
2. Натуральные решения неравенства: $$1;  2;  3;  4;  5;  6;  7.$$
Выберите несколько вариантов ответов
Наименьшее натуральное решение неравенства $$log_{2}x>log_{2}0,2$$, уменьшенное в четыре раза, равно:
ОДЗ: $$x>0$$. 
Решение: $$x>0,2$$. 
Тогда, $$1:4=0,25$$.
Выберите несколько вариантов ответов
Неравенство $$10^{1-5x}\leq0,1$$ выполняется при условии, что:
$$10^{1-5x}\leq10^{-1}$$,  $$1-5x\leq-1$$,  $$x\geq0,4$$.
Выберите несколько вариантов ответов
Количество целых чисел, не удовлетворяющих системе неравенств $$-\frac{1}{4}<\frac{1}{x}<\frac{1}{4}$$, равно:
$$\left\{ \begin{array}{l} \frac{1}{x}>-\frac{1}{4}, \\ \frac{1}{x}<\frac{1}{4}; \end{array}\right.$$ $$\left\{ \begin{array}{l} \frac{4}{x}+1>0, \\ \frac{4}{x}-1<0; \end{array}\right.$$ $$\left\{ \begin{array}{l} \frac{4+x}{x}>0, \\ \frac{4-x}{x}<0. \end{array}\right.$$ 
1. Решение первого неравенства системы: 
$$x\in(-\infty;-4)\cup(0;+\infty)$$ (рис. 1). 
2. Решение второго неравенства системы: 
$$x\in(-\infty;0)\cup(4;+\infty)$$ (рис. 2). 
3. Решение системы неравенств: 
$$x\in(-\infty;-4)\cup(4;+\infty)$$. 
4. Не являются решениями системы неравенств числа: 
$$–4; –3; –2; –1; 0;  1;  2;  3;  4.$$
                                                       
Выберите несколько вариантов ответов
Сумма длин промежутков, образующих решение системы неравенств $$\left\{ \begin{array}{l} |x^2-5x|\leq6, \\ |3-x|\geq2, \end{array}\right.$$ равна:
1. Решение первого неравенства: 
 $$\left\{ \begin{array}{l} x^2-5x\leq6, \\ x^2-5x\geq-6; \end{array}\right.$$ $$\left\{ \begin{array}{l} (x-6)(x+1)\leq0, \\ (x-2)(x-3)\geq0; \end{array}\right.$$
$$x\in[-1;2]\cup[3;6]$$ (рис. 3). 
2. Решение второго неравенства: 
$$\left [\begin{matrix} x-3\geq2,\hfill\\ x-3\leq-2; \end{matrix}\right.$$ $$\left [\begin{matrix} x\geq5,\hfill\\ x\leq1. \end{matrix}\right.$$ 
 3. Решение системы неравенств: 
$$x\in[-1;1]\cup[5;6]$$. 
Тогда, $$(1+1)+(6-5)=3$$.
                                               
Выберите несколько вариантов ответов
Длина отрезка, на котором выполняется неравенство $$5\sqrt[4]x-\sqrt x\geq6$$, равна:
1. Запишем неравенство в виде: $$\sqrt x -5\sqrt[4]x+6\leq0$$. 
ОДЗ: $$x\geq0$$. 
2. Найдем нули функции: $$f(x)= \sqrt x-5\sqrt[4]x+6.$$
Полагая $$\sqrt[4]x=a$$, получим: $$a^2-5a+6=0$$, откуда $$a_1=2$$, $$a_2=3$$. 
Тогда: $$x_1=16$$, $$x_2=81$$. 
3. Решение неравенства (рис. 1): $$[16;81]$$ . 
4. $$81-16=65$$.
                                             
Выберите несколько вариантов ответов
Сумма всех целых чисел, которые удовлетворяют системе неравенств $$1<2^{|7-x|}<2\sqrt2$$  , равна:
1. Решение первого неравенства:
$$2^{|x-7|}>1$$, $$|x-7|>0$$, откуда $$x\neq7$$.
2. Решение второго неравенства:
$$2^{|x-7|}<2^{1,5}$$;  $$|x-7|<1,5$$; 
$$-1,5<x-7<1,5; 5,5<x<8,5$$
3. Решение системы неравенств: 
$$x\in(5,5;7)\cup(7;8,5)$$.
4. $$6+8=14$$.
Выберите несколько вариантов ответов
Наименьшее целое решение неравенства $$log_{2}log_{0,5}(\sqrt x-1) \leq0$$ равно:
1. ОДЗ: $$\sqrt x-1>0$$ и $$log_{0,5}(\sqrt x-1)>0$$, откуда $$1
2. $$log_{0,5}(\sqrt x -1)$$,  $$\sqrt x-1\geq0,5$$,  $$x\geq2,25$$.
Следовательно, $$2,25\leq x<4$$. 

Выберите несколько вариантов ответов