Загрузка

Функции

На множестве всех действительных чисел определены функции:

  1. $$y=\sqrt[3]{x}$$;
  2. $$y=\sqrt{x}$$;
  3. $$y=\frac{2}{x}$$;
  4. $$y=\frac{x}{2}$$;
  5. $$y=5,5x^{2}+6x-77$$.

Запишем области значений данных функций:

  1. $$y=\sqrt[3]{x}$$, $$D\left ( f \right ):x \in R$$;
  2. $$y=\sqrt{x}$$, $$ D\left ( f \right ): x\geq 0$$;
  3. $$ y=\frac{2}{x} $$, $$ D\left ( f \right ):x \in R/x\neq 0 $$;
  4. $$y=\frac{x}{2}$$, $$ D\left ( f \right ):x \in R$$;
  5. $$y=5,5x^{2}+6x-77$$, $$ D\left ( f \right ): x \in R$$.

Выберите один из вариантов

Сумма наименьших периодов функций $$y=tg2x$$ и $$y=-ctg\frac{x}{2}$$ равна:

  1. Наименьший период функции $$y=tg2x$$:
    $$T=\pi :2=0,5\pi $$.
  2. Наименьший период функции $$y=-ctg\frac{x}{2}$$:
    $$T=\pi: \frac{1}{2}=2\pi $$.
  3. Тогда, $$0,5\pi +2\pi =2,5\pi $$.
Выберите один из вариантов

Имеют нули функции:

  1. $$y=log_{7}x$$;
  2. $$y=0,7^{x}$$;
  3. $$y=cosx$$;
  4. $$y=arccosx$$;
  5. $$y=ctgx$$.

  1. $$log_{7}x=0$$, откуда $$x=7^{0}=1$$.
  2. $$0,7^{x}\neq 0$$.
  3. $$cosx=0$$, откуда $$x=\frac{\pi }{2}+\pi n$$, $$n \in Z$$.
  4. $$arccosx=0$$, откуда $$x=1$$.
  5. $$y=ctgx$$, откуда $$x=\frac{\pi }{2}+\pi n$$, $$n \in Z$$.
Выберите один из вариантов

Разность наибольшего и наименьшего значений функции $$y=arccosx$$:

Область значений: $$\left [ 0; \pi \right ]$$.
Тогда, $$\pi -0=\pi $$.

Выберите один из вариантов

Если угловой коэффициент прямой равен $$-0,5$$ и она проходит через точку $$M\left ( -2; -1 \right )$$, то этой прямой принадлежит точка:

Имеем прямую $$y=-0,5x+b$$.
Тогда: $$-1=-0,5\cdot \left ( -2 \right )+b$$, откуда $$b=-2$$.
Уравнение прямой: $$y=-0,5x-2$$.
Этой прямой принадлежит точка $$M_{4}\left ( 3;-3,5 \right )$$, так как $$-3,5=-1,5-2$$.

Выберите один из вариантов

Количество целых чисел, не превосходящих по абсолютной величине число $$6$$, и принадлежащих области значений функции $$xy=3$$, заданной на интервале $$\left ( -3;6 \right )$$, равно:

Имеем функцию $$y=\frac{3}{x}$$ (рис. $$1$$).
Получим числа:
$$-6$$, $$-5$$, $$-4$$, $$-3$$, $$-2$$, $$1$$, $$2$$, $$3$$, $$4$$, $$5$$, $$6$$.

Рис. 1

Выберите один из вариантов

Сумма координат точки пересечения графика функции $$y=0,5^{x}+2$$ с осью ординат равна:

  1. Если $$x=0$$, то $$y=0,5^{0}+2=1+2=3$$.
  2. $$0+3=3$$.
Введите ответ в поле

Если парабола проходит через точки $$\left ( 1;-10 \right )$$ и $$\left ( -1;6 \right )$$, а прямая $$x=2$$ – ось ее симметрии, то разность абсциссы и ординаты ее вершины равна:

Имеем функцию $$f\left ( x \right )=ax^{2}+bx+c$$.
Так как $$x_{0}=-\frac{b}{2a}$$, то $$-\frac{b}{2a}=2$$, откуда $$b=-4a$$.
Получим: $$f\left ( x \right )=ax^{2}-4ax+c$$.
Решим систему уравнений:
$$\begin{cases} a-4a+c=-10,\\ a+4a+c=6; \end{cases} \begin{cases} -3a+c=-10,\\ 5a+c=6.\end{cases} $$
Получим: $$5a+3a=6+10$$, откуда $$a=2$$, а $$c=-4$$.
Тогда, $$f\left ( x \right )=2x^{2}-8x-4$$.
Координаты вершины:
$$x_{0}=2$$; $$y_{0}=8-16-4=-12$$.
Следовательно, $$2+12=14$$.

Введите ответ в поле
Произведение всех целых чисел, принадлежащих области определения функции $$y=\frac{2}{x-3}-1$$, при которых она не отрицательна, равно:
  1. Построим график функции $$y=\frac{2}{x}$$ ($$1$$) (рис. $$2$$):
  2. Построим график функции $$y=\frac{2}{x-3}$$ ($$2$$):
    выполним параллельный перенос графика ($$2$$) вдоль оси $$Ox$$ на $$3$$ единичных отрезка вправо (рис. $$2$$).
  3. Построим график функции $$y=\frac{2}{x-3}-1$$ ($$3$$):
    выполним параллельный перенос графика ($$2$$) вдоль оси $$Oy$$ на $$1$$ единичный отрезок вниз (рис. $$3$$).
  4. Найдем точку пересечения графика ($$3$$) с осью $$Ox$$:
    $$\frac{2}{x-3}-1=0$$, $$x-3=2$$, $$x=5$$.
    Тогда, $$4\cdot 5=20$$.
Рис. 2
Рис. 3
Введите ответ в поле

Число точек пересечения графиков функций $$f\left ( x \right )=\left | tgx \right |$$ и $$f\left ( x \right )=1-x^{2}$$ равно:

  1. Построим график функции $$f\left ( x \right )=\left | tgx \right |$$ ($$1$$) (рис. $$4$$).
  2. Построим график функции $$f\left ( x \right )=1-x^{2}$$ ($$2$$) (рис. $$4$$).
  3. Графики функций имеют две точки пересечения.
Рис. 4
Введите ответ в поле