Загрузка

Векторная алгебра

Даны векторы $$\bar{a}=4\bar{i}-2\bar{j}$$ и $$\bar{b}=2\bar{i}+\bar{j}$$. Сумма модулей векторов $$3\bar{a}+\bar{b}$$ и $$\bar{b}-\bar{a}$$ равна:

1.Запишем координаты векторов $$\bar{a}$$ и $$\bar{b}$$:
$$\bar{a}(4;-2)$$, $$\bar{b}(2;1)$$.
2. Найдем координаты векторов $$3\bar{a}+\bar{b}$$ и $$\bar{b}-\bar{a}$$:
$$3\bar{a}+\bar{b}=\bar{c}(14;-5)$$,
 $$\bar{b}-\bar{a}=\bar{d}(-2;3)$$.
3. Найдем длины векторов $$\bar{c}$$ и $$\bar{d}$$:
$$|\bar{c}|=\sqrt{196+25}=\sqrt{221}$$,
$$|\bar{d}|=\sqrt{4+9}=\sqrt{13}$$.
4.Найдем сумму модулей векторов $$\bar{c}$$ и $$\bar{d}$$:
 $$|\bar{c}| +|\bar{d}|=\sqrt{221}+\sqrt{13}$$.
Выберите один из вариантов
Высота $$A_1H$$ параллелепипеда $$ABCDA_1B_1C_1D_1$$ с вершинами в точках $$A_1(0;1;-1)$$, $$A(1;3;-2)$$, $$B(3;1;0)$$, $$D(2;-3;1)$$ равна: 


Объем параллелепипеда можно найти по формуле:
$$V=S_{ABCD}\cdot A_1H$$.
Так как $$V=8$$ (Задача 8), а $$S_{ABCD}=2\sqrt{38}$$ (Задача 9), то 
$$A_1H=\frac{8}{2\sqrt{38}}=\frac{2\sqrt{38}}{19}$$.
Выберите один из вариантов
Длина биссектрисы $$BK$$ треугольника $$ABC$$ с вершинами в точках $$A(2;1;3)$$,$$B(-1;5;3)$$, $$C(5;5;-5)$$ равна:

1. Найдем длины сторон $$BA$$ и $$BC$$ треугольника:
$$BA=\sqrt{(2+1)^2+(1-5)^2+(3-3)^2}=5$$;
$$BC=\sqrt{(5+1)^2+(5-5)^2+(-5-3)^2}=10$$.
2. По свойству биссектрисы треугольника:
$$\frac{BA}{BC}=\frac{KA}{CK}=\frac{5}{10}=\frac{1}{2}$$.
3. Найдем координаты точки $$K$$:
Так как $$l=0,5$$, $$x_1=2$$, $$x_2=5$$, $$y_1=1$$, $$y_2=5$$, $$z_1=3$$, $$z_2=-5$$, то 
$$x=\frac{2+0,5\cdot5}{1+0,5}=3$$, $$y=\frac{1+0,5\cdot5}{1+0,5}=\frac{7}{3}$$, $$z=\frac{3-0,5\cdot5}{1+0,5}=\frac{1}{3}$$.
4. Найдем длину медианы $$BK$$:
$$BK=\sqrt{(3+1)^2+(\frac{7}{3}-5)^2+(\frac{1}{3}-3)^2}=\frac{4\sqrt{17}}{3}$$.
Выберите один из вариантов
Модуль скалярного произведения векторов $$\bar{a}=\bar{i}-2\bar{j}+5\bar{k}$$ и $$\bar{b}=\bar{j}-2\bar{i}-3\bar{k}$$ равен:

1.Запишем координаты данных векторов:
$$\bar{a}(1;-2;5)$$, $$\bar{b}(-2;1;-3)$$.
2.Найдем скалярное произведение:
$$\bar{a}\cdot\bar{b}=1\cdot(-2)-2\cdot1+5\cdot(-3)=-19$$.
3. Найдем модуль скалярного произведения:
$$|-19|=19$$.
Введите ответ в поле
В полярной системе координат точка $$C(-2; -2)$$ будет иметь координаты:
Так как $$x = -2$$ и $$y = -2$$, то точка расположена в третьей четверти координатной плоскости.
Найдем полярные координаты:
$$\rho=\sqrt{4  +4}=2\sqrt{2}$$;
$$tg\varphi=\frac{-2}{-2} = 1$$ , $$\varphi = \pi + arctg 1 = \frac{5\pi}{4}$$. 
Выберите один из вариантов
Векторы $$\bar{a}(-2x; -3; 0)$$,  $$\bar{b}(5x; 6; -8)$$ и  $$\bar{c}(2; 1; -3)$$ компланарны, если значение $$x$$ равно:

Решим уравнение:
$$\begin{vmatrix}-2x & -3 & 0 \\ 5x & 6 & -8\\ 2 & 1 & -3\end{vmatrix}=0$$,
$$36x + 48-45x-16x=0$$,
$$x=\frac{48}{25}$$.
Выберите один из вариантов
Если точки $$A(5; -2)$$ и $$B(-1; 4)$$ – концы отрезка $$AB$$, а точка $$M(x;y)$$ делит этот отрезок в отношении $$3:2$$, считая от точки $$B$$, то сумма координат точки $$M$$ равна:
Так как $$l=1,5$$, $$x_1=-1$$, $$x_2=5$$, $$y_1=4$$, $$y_2=-2$$, то
$$x=\frac{-1+1,5 \cdot 5}{1+1,5}=2,6$$,
$$y=\frac{4-1,5 \cdot 2}{1+1,5}=0,4$$.
Введите ответ в поле
Площадь грани $$ABCD$$ параллелепипеда $$ABCDA_1B_1C_1D_1$$ с вершинами в точках $$A_1(0;1;-1)$$, $$A(1;3;-2)$$, $$B(3;1;0)$$, $$D(2;-3;1)$$ равна:
1. Найдем координаты векторов,на которых построен параллелограмм $$ABCD$$:
$$\overline{AD}=\bar{a}(1;-6;3)$$;
$$\overline{AB}=\bar{b}(2;-2;2)$$;
2. Найдем векторное произведение векторов $$\bar{a}$$ и $$\bar{b}$$:
$$\bar{d}=\bar{a}\times \bar{b}=\begin{vmatrix}\bar{i} &  \bar{j}&\bar{k} \\ 1 &  -6& 3\\ 2 &  -2& 2\end{vmatrix}$$,
$$\bar{d}=6\bar{i}+4\bar{j}+10\bar{k}$$.
3.Найдем модуль вектора $$\bar{d}$$ (площадь параллелограмма $$ABCD$$):
$$|\bar{d}|=\sqrt{36+16+100}=2\sqrt{38}$$.
Выберите один из вариантов
Объем параллелепипеда $$ABCDA_1B_1C_1D_1$$ с вершинами в точках $$A_1(0;1;-1)$$, $$A(1;3;-2)$$, $$B(3;1;0)$$, $$D(2;-3;1)$$ равен:
1. Найдем координаты векторов, на которых построен параллелепипед:
$$\overline{AD}=\bar{a}(1;-6;3)$$;
$$\overline{AB}=\bar{b}(2;-2;2)$$;
$$\overline{AA_1}=\bar{c}(-1;-2;1)$$.
2. Найдем смешанное произведение векторов $$\bar{a}$$, $$\bar{b}$$ и $$\bar{c}$$:
$$\bar{c}\cdot (\bar{a}\times \bar{b})=\begin{vmatrix}-1 & -2 & 1\\ 1 &  -6& 3\\ 2 & -2 & 2\end{vmatrix}=8$$.
3. Найдем объем параллелепипеда:
$$V=|8|=8$$.
Выберите один из вариантов
Если векторы $$\bar{a}(3; -2)$$ и $$\bar{b}(-1; 1)$$ образуют базис, то произведение коэффициентов разложения вектора $$\bar{c}(2;1)$$  по этому базису равно:
1. Векторы $$\bar{a}$$ и $$\bar{b}$$ образуют базис, так как
$$\Delta=\begin{vmatrix}3 & -1  \\-2& 1\end{vmatrix}=3-2=1\neq0$$.
2. Решим систему уравнений:
$$\begin{equation}\begin{cases}3\alpha_1-\alpha_2=2,\\-2\alpha_1+\alpha_2=1,\end{cases}\end{equation}$$
откуда $$\alpha_1=3$$, $$\alpha_2=7$$.

Введите ответ в поле